Qiangqiang (Chad) Huang

Ph.D. CANDIDATE · ROBOTICS · MIT

💌 hqq@mit.edu | 🌴 qq-huang.github.io | 🖸 doublestrong | 🛅 qiangqiang-huang-971838207 | 🕿 Qiangqiang Huang

Engineering Background _____

State estimation · Computer vision · SLAM · Visual localization · Probabilistic modeling and inference

Education

Massachusetts Institute of Technology	Cambridge, MA
Ph.D. in Robotics, Department of Mechanical Engineering	2018 – 2023 (expected)
Proposed thesis title: Scalable Full Posterior Inference for Uncertainty-Aware Robot Perception	
Advisor: Prof. John Leonard	
Tsinghua University	Beijing, China
M.S. IN POWER ENGINEERING AND ENGINEERING THERMOPHYSICS, SCHOOL OF VEHICLE AND MOBILITY	2014 - 2017
B.E. IN VEHICLE ENGINEERING, SCHOOL OF VEHICLE AND MOBILITY	2010 - 2014
Minor: Computer Science	

Experience _____

Computer Science and Artificial Intelligence Lab	MIT
RESEARCH ASSISTANT @ MARINE ROBOTICS GROUP LED BY PROF. JOHN LEONARD	2018 - present
 <i>Algorithm development</i> for full posterior inference in SLAM (code: NF-iSAM, NSFG, GAPSLAM) <i>Object-based SLAM</i> in indoor environments and <i>range-only SLAM</i> in outdoor environments (video) 	
Microsoft	Redmond, WA
Research intern	Jun Aug. 2022
 Algorithmic solution to the automatic placement of fiducial markers in visual localization using features (code: OMP) Visual localization experiments in both <i>photo-realistic simulation</i> and <i>real-world</i> environments (video) 	
Research Projects	
GAPSLAM: Blending Gaussian Approximation and Particle Filters for Real-Time Non-Gaussian SLAM	Mar. 2022 - Present
 Inferring marginal posteriors of robot poses and landmark locations encountered in SLAM via <i>real-time operation</i> Paper [P1], code, and demo video 	
OMP: Optimizing Marker Placement for Improved Visual Localization	Jun. 2022 - Mar. 2023
 <i>First</i> work that optimizes marker placement for visual localization based on scene features and fiducial markers. Paper [J1], code, and demo video 	
NF-iSAM: Incremental Smoothing and Mapping via Normalizing Flows	Nov. 2019 - Oct. 2022
 Exploiting the expressive power of <i>neural networks</i>, and training normalizing flows to model and sample the joint posterior encountered in SL. Paper [C3, J2], code, and talk 	AM.
NSFG: Nested Sampling for Factor Graphs	Jun. 2020 - Oct. 2022
 Leveraging nested sampling to generate high-quality samples of posterior distributions at the expense of computation. These samples serve as <i>reference solutions</i> for validating other inference methods. Paper [J3], code, and demo video 	
Mixture Models for Representing Pose Ambiguity in Object-Based SLAM Systems	Mar. 2020 - Oct. 2021
 Modeling multi-hypothesis object poses that are incurred by perceptual aliasing in images. Eusing these multi-hypothesis models in object-based SLAM systems. 	

• Fusing these multi-hypothesis models in object-based SLAM systems.

• Paper [C2, C1], talk1, and talk 2

Recent Publications

PREPRINTS

[P1] GAPSLAM: Blending Gaussian Approximation and Particle Filters for Real-Time Non-Gaussian SLAM Qiangqiang Huang, John J. Leonard arXiv preprint arXiv:2303.14283, accepted by *IEEE/RSJ IROS* 2023.

JOURNAL ARTICLES

- [J1] Optimizing Fiducial Marker Placement for Improved Visual Localization Qiangqiang Huang, Joseph DeGol, Victor Fragoso, Sudipta N. Sinha, John J. Leonard IEEE Robotics and Automation Letters, 8, 5, pp. 2756–2763, 2023
- [J2] Incremental Non-Gaussian Inference for SLAM Using Normalizing Flows Qiangqiang Huang, Can Pu, Kasra Khosoussi, David M. Rosen, Dehann Fourie, Jonathan P. How, John J. Leonard IEEE Transactions on Robotics, 2022
- [J3] Nested Sampling for Non-Gaussian Inference in SLAM Factor Graphs <u>Qiangqiang Huang</u>⁺, Alan Papalia, John J. Leonard *IEEE Robotics and Automation Letters & 2022 IEEE/RSJ IROS*, 7, 4, pp. 9232–9239, 2022

CONFERENCE PROCEEDINGS (*EQUAL CONTRIBUTORS, +CONFERENCE PRESENTER)

- [C1] A Multi-Hypothesis Approach to Pose Ambiguity in Object-Based SLAM Jiahui Fu⁺, <u>Qiangqiang Huang</u>, Kevin Doherty, Yue Wang, John J. Leonard 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
- [C2] Consensus-Informed Optimization Over Mixtures for Ambiguity-Aware Object SLAM Ziqi Lu^{*,+}, Qiangqiang Huang^{*}, Kevin Doherty, John J. Leonard 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
- [C3] NF-iSAM: Incremental Smoothing and Mapping via Normalizing Flows Qiangqiang Huang^{*,+}, Can Pu^{*}, Dehann Fourie, Kasra Khosoussi, Jonathan P. How, John J. Leonard 2021 IEEE Intl. Conf. on Robotics and Automation (ICRA)

Selected Class Projects

Teddy Bear Finder: Real-Time Exploration in Unknown Environments Using MIT RACECAR	MIT
Class: Visual Navigation for Autonomous Vehicles	Dec. 2019
 Integrating SLAM, the frontier-based exploration approach, and a learned object detector to find teddy bears in unknown environment Demonstration: video in a small environment and video in a relatively larger environment. 	S
Optimal Racing Line Control for Race Cars	MIT
Class: Principle of Optimal Control and State Estimation	May 2019
Using optimal control techniques to solve for optimal racing lines of an F1 race car and MIT RACECAR	

• Demonstration: video for the F1 race car and video for MIT RACECAR.

Skills_____

ProgrammingPython, C/C++, MATLAB, Julia, Fortran, LaTeXSoftware LibrariesPyTorch, OpenCV, Open3D, PyMC3, Unreal Engine, Robot Operating System, GTSAM

Honors & Awards _____

2016Student Advisory Committee Travel Awards, \$2000 travel grantASME IGTI2015,2016China National Scholarship, annual selection for academic excellenceMinistry of Education, China2014Outstanding Diploma Thesis, 5% among diploma projectsTsinghua University20111st Prize, 28th National Physics Olympiad (college)Ministry of Education, China20091st Prize, 26th National Physics Olympiad (high school)Ministry of Education, China